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Lesson# 5. Introduc0on to Numerical Modeling (Example: Copper Electrochemical Deposi0on) 

 

Numerical modeling is par0cularly useful in simula0ng electrochemical deposi0on processes like 
copper deposi0on, where mul0ple physical phenomena (such as mass transport, charge transfer, 
and electrochemical kine0cs) interact. In this sec0on, we'll delve deeper into numerical modeling, 
explaining its components with equa0ons using copper electrochemical deposi0on as an example. 

1. Governing Equa0ons in Copper Electrochemical Deposi0on 

In copper electrochemical deposi0on, copper ions (Cu²⁺) in an electrolyte are reduced at the 
cathode to form solid copper (Cu) according to the reac0on: 

Cu2+ + 2e- =Cu (s) 

The numerical model needs to account for various physical processes, including: 

i. Nernst-Planck Equa0on for Mass Transport: 

Mass transport of copper ions in the electrolyte occurs due to diffusion, migra0on, and convec0on. 
The Nernst-Planck equa0on governs this transport: 

𝜕𝐶!"!"
𝜕𝑡 = −∇𝑁!"!"  

Here, 𝑁!"!"  represents the flux of copper ions, which is composed of: 

- Diffusion: Due to concentra0on gradients, governed by Fick's Law: 

𝑁#$%% = −𝐷!"!"∇𝐶!"!"  

where 𝐷!"!"  is the diffusion coefficient, and 𝐶!"!"  is the concentra0on of copper ions. 

- Migra0on: Movement under the influence of an electric field: 

𝑁&$' = −𝑧!"!" + 𝜇!"!" + 𝐶!"!" + ∇𝜙 

where 𝑧!"!"  is the charge number (+2 for Cu²⁺), 𝜇!"!"  is the mobility, and ∇𝜙 is the gradient of 
the electric poten0al. 

- Convec0on: Transport due to bulk movement of the solu0on (if applicable): 

𝑁()*+ = 𝑣𝐶!"!"  

where 𝑣 is the fluid velocity. 
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ii. Poisson Equa0on for Electric Poten0al: 

The electric poten0al distribu0on, 𝜙, in the system is determined by the Poisson equa0on, which 
relates the poten0al field to the charge distribu0on: 

∇,𝜙 = −
𝜌
𝜖  

where 𝜌 is the charge density, and 𝜖 is the permiZvity of the medium. This equa0on is important 
for understanding the electric field in the electrolyte that drives the migra0on of ions. 

iii. Butler-Volmer Equa0on for Electrode Kine0cs: 

At the electrode surface, the current density j depends on the overpoten0al 𝜂 (the difference 
between the applied poten0al and equilibrium poten0al) through the Butler-Volmer equa0on: 

𝑗 = 𝑗- 2𝑒𝑥𝑝 6
𝛼.𝐹𝜂
𝑅𝑇 ; − 𝑒𝑥𝑝 6

−𝛼(𝐹𝜂
𝑅𝑇 ;< 

where: 𝑗- is the exchange current density; 𝛼. and 𝛼(  are the anodic and cathodic charge transfer 
coefficients; F is the Faraday constant; R is the gas constant, and T is the temperature. 

This equa0on captures the rate of electron transfer at the copper-electrolyte interface. 

 

2. Discre0za0on: Finite Difference or Finite Element Method 

Numerical methods, like Finite Difference Method (FDM) or Finite Element Method (FEM), are 
used to discre0ze these equa0ons. Discre0za0on breaks the con0nuous space into small grid 
points, approxima0ng deriva0ves at these points. 

Finite Difference for Diffusion (1D Example): 

The diffusion term from Fick's Law, 
/!#$!"
/0

, can be approximated using finite differences as: 

𝐶$12 − 𝐶$
∆𝑥 	

where 𝐶$12	𝑎𝑛𝑑	𝐶$  are the concentra0ons at points i and i+1, and ∆𝑥 is the distance between the 
points. 

Finite Element for Poisson Equa0on: 

For a 2D or 3D domain, FEM can be used to solve the Poisson equa0on for the poten0al field 𝜙. 
The domain is divided into small elements (e.g., triangles or tetrahedrons), and the solu0on is 
approximated by piecewise func0ons (basis func0ons) within each element. 
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3. Numerical Solu0on: 

Once the equa0ons are discre0zed, the next step is to solve the resul0ng algebraic system of 
equa0ons. This can be done using: 

- Itera0ve methods: Methods like Gauss-Seidel or Jacobi can be used to itera0vely solve the system. 

- Direct solvers: These solve the algebraic system directly, though they can be computa0onally 
expensive for large systems. 

 

4. Boundary Condi0ons: 

Numerical modeling requires appropriate boundary condi0ons to ensure that the solu0on is well-
posed: 

- At the electrode (cathode): The concentra0on of Cu²⁺ changes due to electrochemical reac0ons, 
which can be expressed as a flux boundary condi0on: 

𝐷!"!"
𝜕𝐶!"!"
𝜕𝑡 =

𝑗
2𝐹 

  where j is the current density, and F is Faraday’s constant. 

- At the bulk solu0on: The concentra0on is typically assumed constant or zero flux. 

5. Post-Processing: 

Aher solving the system of equa0ons, the solu0on is analyzed by ploZng the concentra0on 
profiles, poten0al distribu0ons, or current densi0es over 0me. For instance: 

- Copper deposi0on rate: Can be visualized by ploZng the growth of the deposited copper layer 
over 0me. 

- Concentra0on gradients: Showing how the concentra0on of copper ions evolves during 
deposi0on. 

6. Example Results: 

Numerical simula0ons of copper electrochemical deposi0on could show how the concentra0on of 
copper ions depletes near the electrode surface as deposi0on progresses, and how the electric 
poten0al influences the deposi0on rate. These models can also predict the uniformity of the 
copper layer, helping op0mize deposi0on condi0ons in industrial applica0ons. 
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Conclusion: 

Numerical modeling in electrochemical deposi0on involves solving complex sets of par0al 
differen0al equa0ons (PDEs) governing mass transport, poten0al distribu0on, and reac0on 
kine0cs. Using methods like FDM or FEM, these equa0ons are discre0zed and solved itera0vely, 
providing valuable insights into the electrochemical system's behavior. This approach allows 
researchers to op0mize deposi0on processes and predict outcomes before performing 
experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


